Month	Name of the Unit /	Learning Outcomes	Suggested Activities/	Assignment	Assessment
	Chapter/Topic		Projects under Internal		
			Assessment/PRACTICALS		
	Ray Optics and	Recalls all the technical	EXPERIMENTS	WORK SHEET.	
APRIL	Optical Instruments	terms defined for			
+	Ray Optics:	spherical mirrors and	EXP). To find the value	CASE STUDY	
JUNE	Reflection of light,	identifies the correct	of v for different values	QUESTIONS.	
	spherical mirrors,	sign conventions for	of u in case of a concave		
	mirror formula,	mirrors and lenses.	mirror and to find the	DIAGRAM BASED	
	refraction of light.	Draws ray diagram to	focal length.	QUESTIONS.	
	total internal	determine the position	EXP) To find the focal		
	reflection and	of the image of an object	length of a convex lens		
	optical fibers.	and derives all the	by plotting graphs		
	refraction at	equations related to	between u and v or		
	spherical surfaces.	spherical mirrors. Knows	between 1/u and1/v.		
	lenses, thin lens	Snell's laws of refraction	FXP) To determine		
	formula, lens	and obtains the	angle of minimum		
	maker's formula.	relationship among	deviation for a given		
	magnification.	relative refractive indices	prism by plotting a		
	power of a lens.	of different materials	graph between angle of		
	combination of thin	Explains various	incidence and angle of		
	lenses in contact	nhenomena related to	deviation		
	refraction of light	refraction and the	ACT) To observe		
	through a prism.	phenomenon of total	refraction and lateral		
	Optical instruments:	internal reflection	deviation of a beam of		
	Microscopes and	Derives the relationship	light incident obliquely		
	astronomical	between object and	on a glass slab.		
	telescopes	image distances and			
	(reflecting and	derives lens maker's and	ACT) ACT)To study the		
	refracting) and their	thin lens formula.	nature and size of the		
	magnifying powers.	Derives various	image formed by a (i)		
		relationshins for a light	convex lens. (ii) concave		
		ray passing through a	mirror, on a screen by		
		nrism Explains the	using a candle and a		
		magnification by a	screen (for different		
		microscope Derives the	distances of the candle		
		expression for the	from the lens/mirror).		
		magnification by a			
		telescone			
		telescope.			
JULY	Wave front and	Compares wave		WORK SHEET.	PT1
	Huvgen's principle.	theory with			
	reflection and	corpuscular theory		CASE STUDY	
	refraction of plane	and explains		OUESTIONS.	
	wave at a plane	geometrical optics			
	surface using wave	in terms of wave		DIAGRAM BASED	
	fronts. Proof of laws	optics. States		QUESTIONS.	

	of reflection and	Huwgens principle		DROIFCT	
		nuygens principle,		PROJECT.	
	refraction using	explains shell's law			
	Huygen's principie.	of refraction, law			
	Interference,	of reflection and			
	Young's double slit	total internal			
	experiment and	reflection using			
	expression for fringe	the principle.			
	width (No derivation	States the			
	final expression	Superposition			
	only), coherent	principle of waves			
	sources and	and derives the			
	sustained	expressions for			
	interference of light,	intensity of light for			
	diffraction due to a	interference from			
	single slit, width of	coherent and			
	central maxima	incoherent			
	(qualitative	light sources			
	treatment only)	Explains the Young's			
	treatment only).	double slit experiment			
		and			
		dorives the			
		derives the			
		expression for tringe			
		width in Young's			
		experiment.			
		.Explains what is			
		diffraction of light			
		waves and the pattern			
		observed for diffraction			
		from a single slit.			
AUGUST	Semiconductor	Takes initiative to	EXP). To draw the I-V	WORK SHEET.	
	Electronics:	understand the history	characteristic curve for a		
	Materials, Devices	of development of	p-n junction in forward	CASE STUDY	
	and Simple Circuits	semiconductor	bias and reverse bias	QUESTIONS.	
	Energy bands in	electronics. Classifies			
	conductors,	solids as conductors,		DIAGRAM BASED	
	semiconductors and	semiconductors and	ACTIVITIES	QUESTIONS.	
	insulators	insulators on the basis of		PROJECT.	
	(qualitative ideas	resistivities and energy	ACT)To identify a		
	only) Intrinsic and	bandsExplains the	diode, an LED, a		
	extrinsic	lattice structure and	resistor and a		
	semiconductors- p	behaviour of intrinsic	capacitor from a mixed		
	and n type, p-n	semiconductors.	collection of such		
	junction	2.Explains how intrinsic	items		
	, Semiconductor	semiconductors can be			
	diode - I-V	converted into extrinsic			
	characteristics in	semiconductors. Defines			
	forward and reverse	and describes pn			
	bias, application of	iunction as the basic			
		paristion as the basic			

	iunction diode -	building block of			
	diode as a rectifier.	semiconductor devices.			
		Extrapolates the			
		understanding of pn			
		junction to create a pn			
		diode and describes its			
		behaviour under the			
		effect of forward and			
		reverse external bias.			
		Explains the working of			
		pn junction diode as a			
		rectifier in electronic			
		circuits.			
SEPTEMBER	Dual Nature of	Describes the three		WORK SHEET.	TERM1
	Radiation and	significant historical			
	Matter Dual nature	experiments that lead to		CASE STUDY	
	of radiation,	the discovery of		QUESTIONS.	
	Photoelectric effect,	electrons and recognises			
	Hertz and Lenard's	that valence electrons		DIAGRAM BASED	
	observations;	can be emitted from the		QUESTIONS.	
	Einstein's	metal surfaces under		PROJECT.	
	photoelectric	certain conditions.			
	equation-particle	Describes how			
	nature of light.	photoelectric effect was			
	Experimental study	first observed historically	,		
	of photoelectric	and identify the factors			
	effect Matter waves-	that leads to			
	wave nature of	photoelectric emission in			
	particles, de-Broglie	metals. Explains the			
	relation.	variation of			
		photoelectric current as			
		a function of intensity of			
		incident radiation &			
		potential difference and			
		describes the variation			
		of stopping potential			
		with frequency of the			
		incident radiation.			
		Describes the basic			
		reatures of Einstein's			
		explanation for			
		photoelectric effect.			
				1	

OCTOBER	Atoms Alpha-particle	Takes initiative to	WORK SHEET.	
	scattering	understand historical		
	experiment;	experiments related to	CASE STUDY	
	Rutherford's model	the atomic model.	QUESTIONS.	
	of hydrogen atom	8 Explains the nature of	DIAGRAM BASED	
	Expression for radius	electron orbits basis	QUESTIONS.	
	of nth possible orbit,	Puthorford model of	PROJECT.	
	velocity and energy	atom. Evalains the		
	of electron in his	atom. Explains the		
	orbit, of hydrogen	characteristics of atomic		
	(qualitative	spectra of hydrogen		
	treatment only).	atom. 0. Takes initiative		
		to study the details of		
		simplest atomic spectra		
		of hydrogen atom.		
		States and explains why		
		Rutherford nuclear		
		model failed and how		
		Bohr model was a better		
		model of atom.		
		Identifies the energy		
		levels of single electron		
		in the hydrogen atom as		
		per Bohr model.		
		.Explains line spectra of		
		hydrogen atom basis		
		Bohr's postulate. Takes		
		initiative to understand		
		de-Broglie explanation of		
		Bohr postulate of		
		quantisation of angular		
		momentum.		
NOVEMBER	Nuclei Composition		WORK SHEET.	
	and size of nucleus,	Describes the important		
	nuclear force Mass-	characteristics of nuclear	CASE STUDY	
	mass defect: hinding	force.Describes nuclear		
	energy per nucleon	fission as breaking up of	DIAGRAM BASED	
	and its variation with	large nucleus into	QUESTIONS.	
	mass number;	smaller nuclei.	PROJECT.	

	nuclear fission, nuclear fusion. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, gamma rays) including elementary facts about their uses	Describes the electromagnetic spectrum, the different em waves, the order of their distribution in the em spectrum, the frequency ranges and states the applications of each of the type of em wave		
DECEMBER	FULL SYLLABUS			TERM 2
JANUARY	FULL SYLLABUS			PRE BOARD