	Name of the Unit /	Learning Outcomes	Suggested	Assignme	Assessment
Month	Chapter/Topic		Activities/	nt	
			Projects under		
			Assessment/PRAC		
			TICALS		
APRIL+	Units of measurement;	Enumerates the		MCQ	PT1
JUNE	systems of units; SI units,	International system of			
	fundamental and derived	base and supplementary			
	units significant figures	units. Estimates precise		NUMERIC	
	Dimonsions of physical	experimental results using		ALS	
	Dimensions of physical	rounding off the final		WORK	
	quantities, dimensional	results. Identifies and		SHEETS	
	analysis and its applications.	applies the concept of			
		dimensions, dimensional			
		formulae and dimensional			
		analysis techniques to			
		write, validate and derive			
		Identifies and applies the			
		concept of dimensions.			
		dimensional formulae and			
		dimensional analysis			
		techniques to write,			
		validate and derive correct			
	Ctucco ctucin volotionship	physical equations.	EXP)To find the	DDOLECTE	
JULY	Hooke's law Young's modulus	rigid elastic and plastic	force constant of a	ART	
	bulk modulus, shear modulus	bodies. Explains elastic	helical spring by	INTEGRAT	
	of rigidity (qualitative idea	behaviour in solids.	between load and	ED	
	only), Poisson's ratio; elastic	0.Describes and explains	extension.	MODELS.	
	energy	different types of stresses		WORK	
		and corresponding strains		SHEET.	
		produced in a body.			
		various bodies with			
		different materials, elastic			
		behaviours and shape.			
		Explains and derives elastic			
		potential energy stored in a			
		stretched wire		MCO	
AUGU	Pascal's law and its	Defines fluids and explains		CBQ	
51	applications (nyuraulic lift and hydraulic brakes) effect of	fluids Explains the effect of			
	gravity on fluid pressure.	gravity on fluid pressure.			
	Viscosity, Stokes' law, terminal	Describes and explains			
	velocity, streamline and	hydraulic machines based			

	turbulent flow, critical velocity, Bernoulli's theorem and its simple applications. Surface energy and surface tension, angle of contact, excess of pressure across a curved surface, application of surface tension ideas to drops, bubbles and capillary rise.	on Pascal's law. Explains the properties, laws and mathematical equations followed during fluid flow. Explains the viscosity of fluids in terms of fluid friction. Explains surface tension as surface property of liquids only	EXP)To determine the coefficient of viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body.		
			ACT)To study the effect of detergent on surface tension of water by observing . capillary rise.		
			ACT)To note the change in level of liquid in a container on heating and interpret the observations.		
SEPTE MBER	Heat, temperature, thermal expansion; thermal expansion of solids, liquids and gases, anomalous expansion of water; specific heat capacity; Cp, Cv - calorimetry; change of state - latent heat capacity. Heat transfer-conduction, convection and radiation, thermal conductivity, qualitative ideas of Blackbody radiation, Wein's displacement Law, Stefan's law.	Explains and differentiates between heat and temperature of a body. xplains thermal expansion in substances and identifies linear, superficial and cubical expansions. Defines heat capacity and specific heat capacity of a substance and states its importance in amount of heat exchanged by a body to change its temperature. Explains the process of change of state and describes the heat	ACT)To observe and explain the effect of heating on a bi-metallic strip.	PROJECT WORK SHEET	TERM1

OCTO BER	Thermal equilibrium and definition of temperature zeroth law of thermodynamics, heat, work and internal energy. First law of thermodynamics, Second law of thermodynamics: gaseous state of matter, change of condition of gaseous state -isothermal, adiabatic, reversible, irreversible, and cyclic processes	exchanges during the process. xplains the mechanisms of heat transfers from one body to another through conduction, convection and radiation. States and explains Zeroth law of thermodynamics. Describes and explains the three important thermodynamic variables as heat, internal energy and work done.States and explains first law of thermodynamics. Describes and explains specific heat capacity and molar specific heat of matter .States and explains second law of thermodynamics	WORK SHEET	
	Equation of state of a perfect gas, work done in compressing a gas. Kinetic theory of gases - assumptions, concept of pressure. Kinetic interpretation of temperature; rms speed of gas molecules; degrees of freedom, law of equi- partition of energy (statement only) and application to specific heat capacities of gases; concept of	s postulates and describes the properties of different states of matter. spostulates and describes the properties of different states of matter. States kinetic theory of gases and uses the theory to explain the pressure exerted by gas molecules and its temperatureStates and explains the law of equipartition of energies	WORK SHEET. CBQ	

	maan free noth	for gos molosulas with		[
	mean free path,	for gas molecules with			
	Avogadro's number.	varying degrees of			
	concept of mean free	freedom. Defines mean			
	path . Avogadro's	free path of gas molecules			
	number	based on kinetic theory of			
		gases			
NOVE	time period, frequency,	Describes periodic and		WORK	
MBER	displacement as a function of	oscillatory motion using		SHEET	
	time, periodic functions and	common examples and		CBQ	
	their application. Simple	states suitable equations of			
	harmonic motion (S.H.M) and	motion. States the			
	its equations of motion;	equations governing the			
	phase; oscillations of a loaded	displacement, velocity and			
	spring- restoring force and	acceleration of a body in			
	force constant; energy in	simple harmonic motion.			
	S.H.M. Kinetic and potential	Explains the energy and the			
	energies; simple pendulum	force law of the body in			
	derivation of expression for its	SHM. dentifies few			
	time period.	examples of bodies in SHM			
		and derives their equations			
		of motion and time period.			
DECE	Transverse and longitudinal	Describes the concept of	EXP)To study the	WORK	PT2
MBER	wayos speed of travelling	wave motion with	relation between	SHEET	
&	waves, speed of travening	examples. Explains the	frequency and	CBQ	
januar	wave, displacement relation	characteristics of	given wire under		
У	for a progressive wave,	transverse and longitudinal	constant tension		
	principle of superposition of	wave motions with	using		
	wayos, reflection of wayos	examples. 6.States the	Sonometer.		
	standing waves in strings and	of mechanical waves and	speed of sound in		
	organ nines fundamental	derives the equations of	temperature using		
	organ pipes, randamentar	resultant wave. Describes	a resonance tube		
	mode and harmonics, Beats.	the reflection of	by two resonance		
		progressive waves from	positions		
		ngia and non ngia			
		boundaries. Defines and			
		explains standing waves			
		produced due to reflection			
		of waves by two			
		and ovalains the formation			
		and explains the formation			
		or beats due to			
		superposition of sound			
		waves of slightly different			
falses		irequencies.			
reorua	FULL STLLABUS				FINAL EXAM
ry					

CLASS XI PART 2 PHYSICS