ACADEMIC YEAR PLAN : 2023-24

Name of the S	: Physics Part -1		Class: XI A \&B		
Name of the Month/ No. of periods	Name of the Unit / Topics	Learning Outcomes	Suggested Activities / Projects under internal assessment/ Practicals	Assignment	Assessment
APRIL -JUNE (18)	Kinematics Frame of reference, Motion in a straight line: Position-time graph, speed and velocity. Elementary concepts of differentiation and integration for describing motion. Uniform and nonuniform Motion, average speed and instantaneous velocity. Uniformly accelerated motion, velocity Time and position-time graphs. Relations for uniformly accelerated motion (graphical treatment).	Students will be able to--*understand Frame of reference *discuss motion in a straight line *Plot Position-time graph, speed and velocity.velocity -time and position-time graphs. *understand elementary concepts of differentiation and integration for describing motion. *differentiate Uniform and nonuniform Motion, average speed and instantaneous velocity. understand uniformly accelerated motion *derive relations for uniformly accelerated motion (graphical treatment).	EXP.: 1) To measure diameter of a small spherical/cylindrical body and to measure internal diameter and depth of a given beaker/calorimeter using Vernier Callipers and hence find its volume. 2) To measure diameter of a given wire and thickness of a given sheet using screw gauge Activity : 1) Make a flow chart of types of motion.	*Worksheets *Short answer type questions *Numericals based on each topic *Competency based questions *Practical based questions	Class test
$\begin{gathered} \text { JULY } \\ (06) \end{gathered}$	Motion in a plane Scalar and vector quantities; Position and displacement vectors, general vectors and their notations; equality of vectors, multiplication of vectors by a real number; addition and subtraction of Vectors. Relative velocity. Unit vector; Resolution of a vector in a plane - rectangular components. Scalar And Vector product of vectors. Motion in a plane. Cases of uniform velocity and uniform acceleration-projectile motion. Uniform circular motion.	Students will be able to--- * Understand scalar and vector quantities; Position and displacement vectors, general vectors and their notations, unit vector, zero vector equality of vectors *Do multiplication of vectors by a real number; addition and subtraction of Vectors. *understand relative velocity. * resolve a vector in a plane - rectangular components. * DoScalar and Vector product of vectors. *understand Motion in a plane. Cases of uniform velocity and uniform accelerationprojectile motion. *understand Uniform circular motion.	Activity: 1) Change in direction of total velocity of an object at different points on trajectory. 2)Make a concept map of Vector. EXP.: 3) To find the weight of a given body using parallelogram lawof vectors.	*WorksheetsWorksh eets *Short answer type questions *Numericals based on each topic *Competency based questions *Practical based questions.	PT-1

AUGUST (14)	Laws of Motion Intuitive concept of force. Inertia, Newton's first law of motion; momentum and Newton's second law of motion; impulse; Newton's third law of motion. Law of conservation of linear momentum and its applications. Equilibrium of concurrent forces .	Students will be able to---*understand intuitive concept of force. Inertia, *explain Newton's first law of motion; momentum and Newton's second law of motion; impulse; Newton's third law of motion. *discuss law of conservation of linear momentum and its applications. * understand equilibrium of concurrent forces.	Activities: 1) Activities based on Newton's laws of motion---1st law -wsing card,coin and glass,2nd law-heavier and lighter balls falling on sand, 3rd lawactivity with two straw 2) Activity showing impulse momentum theorem(put a sand slowly and then throught stone on sand- impressions are different.	*Worksheets *Short answer type questions *Numericals based on each topic *Competency based questions *Practical based questions	Class test Worksheet
SEPTEMBER	Static and kinetic friction, laws of friction, rolling friction, lubrication. Dynamics of uniform circular motion: Centripetal force, examples of circular motion (vehicle on a Level circular road, vehicle on banked road).	Students will be able to--differentiate static and kinetic friction, *prove laws of friction, rolling friction, *understand dynamics of uniform circular motion *understand the concept of centripetal force and they will discuss examples of circular motion (vehicle on a Level circular road, vehicle on banked road).	EXP.:4) To study the relationship between force of limiting friction and normal reaction and to find the coefficient of friction between a block and a horizontal surface. Activity.:1) Direction of centripetal and centifugal force.	*Worksheets *Short answer type questions *Numericals based on each topic *Competency based questions *Practical based questions	TERM-1
OCTOBER (14)	Work, Energy and Power Work done by a constant force and a variable force; kinetic energy, work-energy theorem, power. Notion of potential energy, potential energy of a spring, conservative forces, nonconservative forces: motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.	Students will be able to--*derive work done by a constant force and a variable force *define kinetic energy *derive work-energy theorem, power. *Notion of potential energy, potential energy of a spring, conservative forces: non-conservative forces: *understand motion in a vertical circle *understand elastic and inelastic collisions in one and two dimensions.	Activities: 1) Activity to show total energy of a system remains constant throughout the motion. 2) Demonstration to show collision in one dimension and its different cases. Project	*Worksheets *Short answer type questions *Numericals based on each topic *Competency based questions *Practical based questions	$\begin{aligned} & \text { Competency } \\ & \text { based } \\ & \text { questions } \end{aligned}$

NOVEMBER (18)	Motion of System of Particles and Rigid Body Centre of mass of a two-particle system, momentum conservation and centre of mass motion. Centre of mass of a rigid body; centre of mass of a uniform rod. Moment of a force, torque, angular momentum, laws of conservation of angular momentum and its applications. Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions. Moment of inertia, radius of gyration. Values of moments of inertia for simple geometrical objects (no derivation).	Students will be able to--*understand centre of mass of a twoparticle system, *understand momentum conservation and centre of mass motion. *discuss Centre of mass of a rigid body; centre of mass of a uniform rod. Moment of a force, torque, angular momentum *understand laws of conservation of angular momentum and its applications. *understand the concept of equilibrium of rigid bodies, rigid body rotation and equations of rotational motion *compare of linear and rotational motions. *understand the moment of inertia, radius of gyration. *derive values of moments of inertia, for simple geometrical objects (no derivation).	Activities: 1) Virtual lab activity: Find out the values torque, moment of inertia and angular momentum for the following values of angular velocities=1,2,2,3for positions 1,2,3,4 2) Balancing of scale to explain torque concept. 3) balancing of scale on fingers to explain concept of centre of mass.	*Worksheets *Short answer type questions *Numericals based on each topic *Competency based questions *Practical based	Numericals worksheet
DECEMBER (12)	Gravitation Keplar's laws of planetary motionThe universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Gravitational potential energy and gravitational potential. Escape velocity. Orbital velocity of a Satellite.	Students will be able to ---- Discuss Keplar's laws of planetary motion *State Universal law of gravitation. *derive acceleration due to gravity and its variation with altitude and depth. *understand gravitational potential energy and gravitational potential. *define and derive expression of escape velocity and Orbital velocity of a Satellite.	Act (1). To make a paper scale of given least count, e.g., $0.2,0.5 \mathrm{~cm}$ Act (2). To measure the force of limiting friction for rolling of a roller on a horizontal plane. Act (3). To study the conservation of energy of a ball rolling down on an inclined plane (using a double Inclined plane).	*Worksheets *Short answer type questions *Numericals based on each topic *Competency based questions	PT-2
JANUARY	Chapterwise	Revision			
FEBRUARY	Full syllabus				TERM-2

