CARMEL CONVENT SR SEC SCHOOL ,RATANPUR,BHOPAL. ACADEMIC PLAN :2023-24

STD: XI
SUBJECT: MATHEMATICS (041)

Month / No of Working Days	Name of the Unit / Chapter/Topic	Learning Outcomes	Suggested Activities/ Projects under Internal Assessment/PRAC TICALS	Assignment	Assessment
JUNE	SETS Sets and their representations, Empty set, Finite and Infinite sets, Equal sets, Subsets, Subsets of a set of real numbers especially intervals (with notations). Universal set. Venn diagrams. Union and Intersection of sets. Difference of sets. Complement of a set. Properties of Complement.	develops the idea of Set from the earlier learnt concepts in number system , geometry etc.		Powerpoint presentatio n on Sets	
JULY	RELATIONS AND FUNCTIONS Ordered pairs. Cartesian product of sets. Number of elements in the Cartesian product of two finite sets. domain, codomain and range of a relation. Function as a special type of relation. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions. Trigonometric Functions Positive and negative angles. Measuring angles in radians and in degrees and conversion from one measure to another. Definition of trigonometric functions with the help of unit circle. Truth ofthe identity $\sin 2 x+\cos 2 x=1$, for all x. Signs of trigonometric functions. Domain and range of trigonometric functions and their graphs. Expressing $\sin (x \pm y)$ and $\cos (x \pm y)$ in terms of $\sin x$, siny, cosx \& cosy and their simple applications Complex Numbers and Quadratic Equations Need for complex numbers, especiallyv-1, to be motivated by inability to solve some of the quadratic equations. Algebraic properties of complex numbers. Argand plane	identifies relations between different sets. relates earlier learnt concept of trigonometric ratios to functions and evolves the idea of trigonometric functions. Extends the idea of real numbers to a larger system of complex numbers.	1. To verify distributive law for three given non-empty sets A, B and C, that is $A u(B \cap C)=(A u B)$ $n(A u C)$.	Graphs of trigonom etric functions	PT-1 SETS AND RELATIONS AND FUNCTIONS

AUGUST	Linear Inequalities Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line Permutations and Combinations Fundamental principle of counting. Factorial n. (n!) Permutations and combinations, derivation of Formulae for ${ }^{n} P_{r}$ and ${ }^{n} \mathrm{C}_{r}$ and their connections, simple applications. Binomial Theorem Historical perspective, statement and proof of the binomial theorem for positive integral indices. Pascal's triangle, simple applications.	Demonstrates strategies for solving systems of linear inequalities. Applies the ideas of permutations and combinations to daily life situations of arranging and grouping the objects. Develops the idea of Binomial theorem For a positive integral index from the earlier learnt concept of finding squares and cubes of binomials.	2. To verify the graph of the given inequality and representation on half plane 3. To find the number of ways in which three cards can be selected from given five cards 4. To construct a Pascal's triangle and to write binomial expansion for a given positive integral exponent	Worksheet on Linear Inequalities graphically Maths Musings on Binomial Coefficie nts from Pascal's Triangle	
SEPTEMBER	Sequence and Series Sequence and Series. Arithmetic Mean (A.M.) Geometric Progression (G.P.), general term of a G.P., sum of n terms of a G.P., infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M.	Extends the ideas related to Arithmetic progressions learnt earlier to new types of sequences and their series.	5. To demonstrate that the arithmetic mean of two different positive numbers is always greater than Geometric mean.		TERM -1 CH 1 TO 7
OCTOBER	Straight Lines Brief recall of two dimensional geometry from earlier classes. Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axis, point -slope form, slope-intercept form, two-point form, intercept form, Distance of a point from a line. Conic Sections Sections of a cone: circles, ellipse, parabola, hyperbola, a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola.	Constructs different forms of a straight line using the earlier learnt concepts of coordinate geometry. Analyses different curves like circles, ellipses, parabolas and hyperbolas based on the ideas developed for straight lines using coordinates.		Workshe et on Straight Lines	

